Predicting Driving Direction with Weighted Markov Model
نویسندگان
چکیده
Driving direction prediction can be useful in different applications such as driver warning and route recommendation. In this paper, a framework is proposed to predict the driving direction based on weighted Markov model. First the city POI (Point of Interesting) map is generated from trajectory data using weighted PageRank algorithm. Then, a weighted Markov model is trained for the near term driving direction prediction based on the POI map and historical trajectories. The experimental results on real-world data set indicate that the proposed method can improve the original Markov prediction model by 10% at some circumstances and 5% overall.
منابع مشابه
Adaptive Driving Situation Characterization for Predicting the Driving Load of Electric Vehicles in Uncertain Environments
Battery powered electric vehicles (EVs) have emerged as a promising solution for reducing the consumption of fossil fuels in modern transportation systems. Unfortunately the battery pack has a low energy storage capacity, which causes the driving range of the EV to become very limited. It is therefore essential to properly characterize the different driving situations of the vehicle in order to...
متن کاملLand use and land cover spatiotemporal dynamic pattern and predicting changes using integrated CA-Markov model
Analyzing the process of land use and cover changes during long periods of time and predicting the future changes is highly important and useful for the land use managers. In this study, the land use maps in the Ardabil plain in north-west part of Iran for four periods (1989, 1998, 2009 and 2013) are extracted and analyzed through remote sensing technique, using the land-sat satellite images. T...
متن کاملWeight Semi Hidden Markov Model and Driving Situation Classification for Driver Behavior Diagnostic
In this study, we propose to use statistical modelling to analyze, model, and categorize driving activity. To achieve this objective, we develop a new statistical model by adding a weight feature to the classic Semi Hidden Markov Model (SHMM) framework. Then, to assess its capacity, we conduct an experiment that allows us to record 718 driving sequences categorized in 36 situations. We then use...
متن کاملPredicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm
Cattle supply an important source of nutrition for humans in the world. CpG islands (CGIs) are very important and useful, as they carry functionally relevant epigenetic loci for whole genome studies. As a matter of fact, there have been no formal analyses of CGIs at the DNA sequence level in cattle genomes and therefore this study was carried out to fill the gap. We used hidden markov model alg...
متن کاملPredicting the Air Quality Index of Industrial Areas in an Industrialized City in India Using Adopting Markov Chain Model
Introduction: The rapid urbanization coupled with industrial development in Indian cities has led to air pollution that causes adverse effects on the health of human beings. So, it is crucial to track the quality of air in industrial areas of a city to insulate the public from harmful air pollutants. The present study examined and predicted air quality index levels in industrial areas located ...
متن کامل